Quantifying the Hazards of Green Building Construction for Fire Investigation Analysis

Jason A. Sutula, Ph.D., P.E., CFEI, CFII, CFI
Hughes Associates, Inc., USA

and

Noah L. Ryder, MSFPE, MBA, P.E., CFEI
Fire & Risk Alliance, LLC, USA
• Introduction to the green building movement
• Risk associated with green materials
• Use of the Cone Calorimeter
• Green materials testing data
• Impact of green materials
• Method for assessing risk of green materials
• Fire damage patterns in green materials
Introduction to the Green Building Movement
Modern green building movement roots in 1970 U.S. oil crisis

Research into energy efficient building development
- Increased funding
- New construction methods
- Energy efficient devices
- Green materials
Green building materials have become more commonplace

Little research has been conducted on their impact from a fire safety and fire investigation perspective

Concerns
- Easier ignition of materials
- More rapid fire growth and spread
- Significant release of carbon dioxide (sustainability)
- Fire department personnel safety
- Fire damage pattern analysis
Introduction

• Insulation
• Vegetative roofing systems
• Specialty glazings
• Skylights/solar tubes
• Solar collectors
• Construction & building materials
• High Volume Low Speed (HVLS) fan systems
Figure 1: Contribution of risk factors to total lifecycle carbon emissions.

Factory Mutual, 2010
Risk Associated with Green Materials
What is Risk?

- Risk is inherent to life
- Covers a broad range of potential events that are “bad”
- Insurance companies analyze risk in order to set premiums
- Risk analyses in engineering provide a cost-benefit between the potential loss and a modification prior to a failure that can prevent the loss
Calculating Risk

Risk = (Consequence of Incident) \times (Frequency at which Incident Occurs)
Assessing Risk

- Identify the hazards associated with the process or product
- Use the Risk equation to evaluate the magnitude of the risk (Risk Assessment)
- Manage the risk
- How do we assess the risk for green materials?
Cone Calorimeter
• One of the most prevalent bench-scale test apparatus
• Determines ignition and flammability parameters of materials
• Test samples are small
 – 4 inch square
 – Radiant cone heating element provides 1 – 50 kWm2 of energy on sample
Cone Calorimeter Theory

- Ignition of liquids is expanded to combustible solids with several assumptions

 - Decomposition of the solid does not vary the surface temperature
 - Surface temperature is sufficient to generate flammable vapors
 - Lower flammable limit of gas and air will be reached and allow for piloted ignition
Cone Calorimeter Theory

\[t_{ig} = \frac{(\pi / 4)k\rho c(T_{ig} - T_0)^2}{q''^2} \]

\[t_{ig} < t^* . \]

- Time to ignition is a function of:
 - The thermal properties of the material
 - Temperature of the sample
 - Incident radiation on the sample
Cone Calorimeter Theory

\[k \rho c = \frac{4}{\pi} \left(\frac{h_t}{b} \right)^2, \]

- Thermal inertia, \(krc \):
 - The convective coefficient
 - Slope of the line, \(b \)-parameter
\[
\left(\frac{\dot{q}''_{0,ig}}{\dot{q}''}, t^{-0.5} \right)
\]

- Slope is calculated with a best fit line approximation

\[q''_{0,ig} / q'' = 0.0385 \cdot t^{1/2} \]
Using this analysis and test data, thermophysical properties can be determined for any green or non-green material.

Data on the left is an example for ABS (Acrylonitrile Butadiene Styrene).
Cone Calorimeter – Surface T vs. Flux

Temperature (°C)

Heat Flux (kW/m²)

Sutula and Ryder: Green Building Construction and Fire
Green Material Data from Literature
Common Green Materials

- Bamboo
- Straw
- Linoleum
- Sheep wool
- Paper flake panels
- Seagrass
- Cork
- Coconut
- Lignin
- Wood fiber plates
• Byproduct of paper production
• Deemed natural, renewable, biodegradable
• Used in hybrid materials due to charring ability
• When mixed with ABS
 – Reduced peak HRR by 42%
 – Peak HRR “only” 526 kW/m²
Bamboo Flooring

- Critical flux for ignition
 - 13 kW/m²
- Increasing use due to ability to be rapidly grown
- Deemed a sustainable material
- Comparable to oak flooring
• Commonly used in building construction due to ease of application
• Can be fire retardant treated
• Three different foams were tested
• Critical heat flux for ignition did not vary between the three samples, even the FR treated
Comparison of Small-Scale Testing on Full-Scale Results
• Can be cost prohibitive
• Larger amount of materials needed
 – For example, Li-Ion batteries
• Greater support staff needed
• Results may not provide more information or better results
Several studies have concluded that small-scale can be linked to large-scale testing:
- Hansen and Hovde
- Quintiere and Lian

Strong analytical evidence linking results of cone testing to ISO 9705 Room Corner Test.
Potential Impact of Green Building Materials
Risk of Green Materials

• In the fire setting, determining the risk of green materials is the same as standard materials
 – Time to ignition
 – Thermal inertia
 – Peak heat release rate
 – Total heat release rate
 – Products of combustion
Risk to Occupants

- Occupants must have sufficient notice of the presence of a fire
- Occupants must have sufficient time to egress safely
- What toxicants are produced by a green material involved in the fire?
- Presence of green building materials can influence fire department personnel’s decisions to perform search and rescue
Risk to First Responders

• Insulation building products
 – Potential to create more rapid fire growth and spread

• Lightweight building products
 – Elevated risk to fire service personnel
 – Structure fails more rapidly
 – Several case studies have shown increase in injury and death risk to fire service with these materials
Recent fires in Michigan resulting in deaths of fire service personnel
 – Failure of flooring from lightweight green construction

Similar incidents in Pennsylvania
 – Has resulted in legislation to require gypsum board barrier below lightweight flooring construction
The green initiative has resulted in energy efficient buildings

- Tight building construction
- Well-sealed

Ideal conditions for trapping heat during a fire
Suppressed vs. Non-Suppressed

<table>
<thead>
<tr>
<th>Criteria Pollutants</th>
<th>Emissions (lbs/burn)</th>
<th>Ratio of Emissions, No Sprinkler vs. Sprinkler</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>17 September</td>
<td>1 October</td>
</tr>
<tr>
<td></td>
<td>No Sprinkler</td>
<td>Sprinkler</td>
</tr>
<tr>
<td>CO</td>
<td>26.42</td>
<td>0.23</td>
</tr>
<tr>
<td>NO₂</td>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td>SO₂</td>
<td>0.48</td>
<td>0.20</td>
</tr>
<tr>
<td>Total VOC - THC (as CH₄)</td>
<td>3.77</td>
<td>0.02</td>
</tr>
<tr>
<td>Particulate</td>
<td>17.76</td>
<td>1.39</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Greenhouse Gases</th>
<th>Emissions (lbs/burn)</th>
<th>Ratio of Emissions, No Sprinkler vs. Sprinkler</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>17 September</td>
<td>1 October</td>
</tr>
<tr>
<td></td>
<td>No Sprinkler</td>
<td>Sprinkler</td>
</tr>
<tr>
<td>CO₂</td>
<td>793.95</td>
<td>12.98</td>
</tr>
<tr>
<td>Methane</td>
<td>1.80</td>
<td>0.01</td>
</tr>
<tr>
<td>Nitrous Oxide (N₂O)</td>
<td>0.17</td>
<td>0.02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Metals</th>
<th>Emissions (lbs/burn)</th>
<th>Ratio of Emissions, No Sprinkler vs. Sprinkler</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>17 September</td>
<td>1 October</td>
</tr>
<tr>
<td></td>
<td>No Sprinkler</td>
<td>Sprinkler</td>
</tr>
<tr>
<td>Antimony (Sb)</td>
<td>0.017</td>
<td>0.00056</td>
</tr>
<tr>
<td>Arsenic (As)</td>
<td>0.00056</td>
<td>0.00023</td>
</tr>
<tr>
<td>Barium (Ba)</td>
<td>0.012</td>
<td>0.012</td>
</tr>
<tr>
<td>Beryllium (Be)</td>
<td>0.0014</td>
<td>0.000056</td>
</tr>
</tbody>
</table>
High Profile Examples

- 2009 Monte Carlo Fire, Las Vegas
- 2007 Borgata Water Club Fire, Atlantic City
- 2009 Mandarin Oriental Hotel Fire, Beijing
Risk to the Structure Examples

- Structural Insulated Panels (SIPs)
 - More frequent use
 - Increased fire load
 - Increased ease of ignition

- Spray-on foam insulation
 - Spontaneous ignition
 - Curing process is exothermic
 - Fuel load contribution and ignition source
Method for Assessing Risk
• Quintiere and Lian
 – Developed a method of using scaled data to characterize risk
 – Data from cone calorimeter used to predict flashover time in ISO 9705
 – Study examined data from 54 different materials
Methodology Parameters

- Methodology relies on four parameters:
 - Heat release parameter
 - Thermal response parameter
 - Critical heat flux
 - Available energy parameter
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Physical meaning</th>
<th>Measurement means</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRP, heat release parameter</td>
<td>$\Delta h_c/L$</td>
<td>Slope of peak HRR and flux</td>
</tr>
<tr>
<td>TRP, thermal response parameter</td>
<td>$\sqrt{\frac{\pi}{4} k \rho c (T_{ig} - T_0)}$</td>
<td>Slope of $(\text{time to ignition})^{-1/2}$ and flux</td>
</tr>
<tr>
<td>CHF, critical heat flux</td>
<td>$h_t(T_{ig} - T_\infty)$, $h_t = h_r + h_c$</td>
<td>Lowest flux for piloted ignition</td>
</tr>
<tr>
<td>AEP, available energy parameter</td>
<td>Total energy per unit surface area</td>
<td>Area under HRR and flux curve</td>
</tr>
</tbody>
</table>
Flashover Prediction

- The parameters are used to generate a curve to predict the measured time to flashover

\[t_{\text{FO}} = 0.06533 \cdot \text{AEP}^{0.1297} \cdot \text{HRP}^{-0.2208} \cdot \text{TRP}^{1.3293} \quad \text{in seconds} \]
Flashover Prediction

- Result indicate that flashover can be predicted using the equation.
- Flashover propensity is a quantified measure for assessing the risk of a particular material:
 - Green
 - Standard
Fire Damage Patterns In Green Materials
• Some green building materials can produce rapid flame spread and burn to completion quickly
 – Straw
 – Seagrass
 – Untreated cellulosic insulation
 – Lightweight building elements

• Could mimic the results of accelerant-based fire growth
Unusual Patterns

• Composite materials can result in unusual fire damage patterns
• Understanding and quantifying the risk associated with green materials will allow for better understanding of the resulting damage patterns at a fire scene when green materials have been involved
Ongoing Research

• WPI awarded $1 million DHS grant to investigate: *Quantification of Green Building Features on Firefighter Safety*
Questions?